
Chapter 2

Optical Fibers: Structures, Optical Fibers: Structures, 
Waveguiding & Fabrication



Theories of Optics

• Light is an electromagentic phenomenon described by the same theoretical
principles that govern all forms of electromagnetic radiation. Maxwell’s
equations are in the heart of electromagnetic theory & is fully successful in
providing treatment of light propagation. Electromagnetic optics provides
the most complete treatment of light phenomena in the context of classical
optics.

• Turning to phenomena involving the interaction of light & matter, such as• Turning to phenomena involving the interaction of light & matter, such as
emission & absorption of light, quantum theory provides the successful
explanation for light-matter interaction. These phenomena are described by
quantum electrodynamics which is the marriage of electromagnetic theory
with quantum theory. For optical phenomena, this theory also referred to as
quantum optics. This theory provides an explanation of virtually all
optical phenomena.



• In the context of classical optics, electromagentic radiation propagates in 
the form of two mutually coupled vector waves, an electric field-wave & 
magnetic field wave. It is possible to describe many optical phenomena 
such as diffraction, by scalar wave theory in which light is described by a 
single scalar wavefunction. This approximate theory is called scalar wave 
optics or simply wave optics. When light propagates through & around 
objects whose dimensions are much greater than the optical wavelength, 
the wave nature of light is not readily discerned, so that its behavior can be 
adequately described by rays obeying a set of geometrical rules. This 
theory is called ray optics. Ray optics is the limit of wave optics when the theory is called ray optics. Ray optics is the limit of wave optics when the 
wavelength is very short.

Quantum Optics

Electromagnetic Optics

Wave Optics

Ray Optics



Engineering Model

• In engineering discipline, we should choose the appropriate & easiest 
physical theory that can handle our problems. Therefore, specially in this 
course we will use different optical theories to describe & analyze our 
problems. In this chapter we deal with optical transmission through fibers, 
and other optical waveguiding structures. Depending on the structure, we 
may use ray optics or electromagnetic optics, so we begin our discussion may use ray optics or electromagnetic optics, so we begin our discussion 
with a brief introduction to electromagnetic optics,  ray optics & their 
fundamental connection, then having equipped with basic theories, we 
analyze the propagation of light in the optical fiber structures.   



Electromagnetic Optics

• Electromagnetic radiation propagates in the form of two mutually coupled 
vector waves, an electric field wave & a magnetic field wave. Both are 
vector functions of position & time. 

• In a source-free, linear, homogeneous, isotropic & non-dispersive media, 
such as free space, these electric & magnetic fields satisfy the following 
partial differential equations, known as Maxwell’ equations:
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• In Maxwell’s equations, E is the electric field expressed in [V/m], H is the 
magnetic field expressed in [A/m].

ty permeabili Magnetic :[H/m] 

ty permittivi Electric :[F/m] 


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operation divergence is : 

• The solution of Maxwell’s equations in free space, through the wave 
equation, can be easily obtained for monochromatic electromagnetic 
wave. All electric & magnetic fields are harmonic functions of time of the 
same frequency. Electric & magnetic fields are perpendicular to each other 
& both perpendicular to the direction of propagation, k, known as 
transverse wave (TEM). E, H & k form a set of orthogonal vectors.

operation curl is :
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Electromagnetic Plane wave in Free space
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An electromagnetic wave is a travelling wave which has time
varying electric and magnetic fields which are perpendicular to each
other and the direction of propagation, z.

S.O.Kasap, optoelectronics and Photonics Principles and Practices, prentice hall, 2001



Linearly Polarized Electromagnetic Plane wave
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A plane EM wave travelling along z, has the sameEx (orBy) at any point in a
given xy plane. All electric field vectors in a given xy plane are therefore in phase.
The xy planes are of infinite extent in the x and y directions.

S.O.Kasap, optoelectronics and Photonics Principles and Practices, prentice hall, 2001



Wavelength & free space

• Wavelength is the distance over which the phase changes by        .

• In vacuum (free space):
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EM wave in Media

• Refractive index of a medium is defined as:
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Intensity & power flow of TEM wave

• The poynting vector                           for TEM wave is parallel to the 

wavevector k so that the power flows along in a direction normal to the 
wavefront or parallel to k. The magnitude of the poynting vector is the 
intensity of TEM wave as follows:
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Connection between EM wave optics & Ray 
optics

According to wave or physical optics viewpoint, the EM waves radiated by
a small optical source can be represented by a train of spherical wavefronts
with the source at the center. A wavefront is defined as the locus of all
points in the wave train which exhibit the same phase. Far from source
wavefronts tend to be in a plane form. Next page you will see different
possible phase fronts for EM waves.

When the wavelength of light is much smaller than the object, the
wavefronts appear as straight lines to this object. In this case the light wave
can be indicated by a light ray, which is drawn perpendicular to the phase
front and parallel to the Poynting vector, which indicates the flow of
energy. Thus, large scale optical effects such as reflection & refraction can
be analyzed by simple geometrical process called ray tracing. This view of
optics is referred to as ray optics or geometrical optics.
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S.O.Kasap, optoelectronics and Photonics Principles and Practices, prentice hall, 2001



General form of linearly polarized plane waves

Any two orthogonal plane waves 
Can be combined into a linearly 
Polarized wave. Conversely, any 
arbitrary linearly polarized wave 
can be resolved into two 
independent Orthogonal plane 
waves that are in phase.
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Optical Fiber communications, 3rd ed.,G.Keiser,McGrawHill, 2000



Elliptically Polarized plane waves
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Optical Fiber communications, 3rd ed.,G.Keiser,McGrawHill, 2000



Circularly polarized waves

polarized circularlyleft  :-  polarized, circularlyright  :
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Optical Fiber communications, 3rd ed.,G.Keiser,McGrawHill, 2000



Laws of Reflection & Refraction

Reflection law:  angle of incidence=angle of reflection

Snell’s law of refraction:

2211 sinsin  nn  [2-18]

Optical Fiber communications, 3rd ed.,G.Keiser,McGrawHill, 2000



Total internal reflection, Critical angle
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Phase shift due to TIR

• The totally reflected wave experiences a phase shift however 
which is given by:
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• Where (p,N) refer to the electric field components parallel or 
normal to the plane of incidence respectively.
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Optical waveguiding by TIR:
Dielectric Slab Waveguide

Propagation mechanism in an ideal step-index optical waveguide.

Optical Fiber communications, 3rd ed.,G.Keiser,McGrawHill, 2000



TIR supports that angle minimum ;sin
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Maximum entrance angle,         is found from 
the Snell’s relation written at the fiber end face.
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Launching optical rays to slab waveguide
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Optical rays transmission through dielectric slab 
waveguide
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must be satisfied with following relationship:
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Optical Fiber communications, 3rd ed.,G.Keiser,McGrawHill, 2000



Note

• Home work 2-1) Find an expression for ,considering that the electric 

field component of optical wave is parallel to the plane of incidence (TM-
case).

• As you have seen, the polarization of light wave down the slab waveguide 
changes the condition of light transmission. Hence we should also consider 



the EM wave analysis of EM wave propagation through the dielectric slab 
waveguide. In the next slides, we will introduce the fundamental concepts 
of such a treatment, without going into mathematical detail. Basically we 
will show the result of solution to the Maxwell’s equations in different 
regions of slab waveguide & applying the boundary conditions for electric 
& magnetic fields at the surface of each slab. We will try to show the 
connection between EM wave and ray optics analyses. 



EM analysis of Slab waveguide

• For each particular angle, in which light ray can be faithfully transmitted 
along slab waveguide, we can obtain one possible propagating wave 
solution from a Maxwell’s equations or mode. 

• The modes with electric field perpendicular to the plane of incidence (page) 
are called TE (Transverse Electric) and numbered as:                                                 

Electric field distribution of these modes for 2D slab waveguide can be 
expressed as:

,...TE,TE,TE 210

wave transmission along slab waveguides, fibers & other type of optical 
waveguides can be fully described by time & z dependency of the mode:
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TE modes in slab waveguide
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Modes in slab waveguide
• The order of the mode is equal to the # of field zeros across the guide. The 

order of the mode is also related to the angle in which the ray congruence 
corresponding to this mode makes with the plane of the waveguide (or axis 
of the fiber). The steeper the angle, the higher the order of the mode.

• For higher order modes the fields are distributed more toward the edges of 
the guide and penetrate further into the cladding region. 

• Radiation modes in fibers are not trapped in the core & guided by the fiber 
but they are still solutions of the Maxwell’ eqs. with the same boundary but they are still solutions of the Maxwell’ eqs. with the same boundary 
conditions. These infinite continuum of the modes results from the optical 
power that is outside the fiber acceptance angle being refracted out of the 
core.

• In addition to bound & refracted (radiation) modes, there are leaky modes
in optical fiber. They are partially confined to the core & attenuated by 
continuously radiating this power out of the core as they traverse along the 
fiber (results from Tunneling effect which is quantum mechanical 
phenomenon.) A mode remains guided as long as knkn 12  



Optical Fibers: Modal Theory (Guided or 
Propagating modes) & Ray Optics Theory
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Step Index Fiber

Optical Fiber communications, 3rd ed.,G.Keiser,McGrawHill, 2000



Modal Theory of Step Index fiber

• General expression of EM-wave in the circular fiber can be written as:
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• Each of the characteristic solutions                                                           is 
called mth mode of the optical fiber.       

• It is often sufficient to give the E-field of the mode.                  
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• The modal field distribution,              , and the mode 
propagation constant,        are obtained from solving the 
Maxwell’s equations subject to the boundary conditions given 
by the cross sectional dimensions and the dielectric constants 
of the fiber.

• Most important characteristics of the EM transmission along the fiber are 
determined by the mode propagation constant,              , which depends on 
the mode & in general varies with frequency or wavelength. This quantity 
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the mode & in general varies with frequency or wavelength. This quantity 
is always between the plane propagation constant (wave number) of the 
core & the cladding media .
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• At each frequency or wavelength, there exists only a finite number of 
guided or propagating modes that can carry light energy over a long 
distance along the fiber. Each of these modes can propagate in the fiber 
only if the frequency is above the cut-off frequency,          , (or the source 
wavelength is smaller than the cut-off wavelength) obtained from cut-off 
condition that is:

cω
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• To minimize the signal distortion, the fiber is often operated in a single 
mode regime. In this regime only the lowest order mode (fundamental 
mode) can propagate in the fiber and all higher order modes are under cut-
off condition (non-propagating). 

• Multi-mode fibers are also extensively used for many applications. In 
these fibers many modes carry the optical signal collectively & 
simultaneously.



Fundamental Mode Field Distribution

Optical Fiber communications, 3rd ed.,G.Keiser,McGrawHill, 2000

Polarizations of fundamental mode
Mode field diameter



Ray Optics Theory (Step-Index Fiber)

Skew rays

Each particular guided mode in a fiber can be represented by a group of rays which 
Make the same angle with the axis of the fiber.

Optical Fiber communications, 3rd ed.,G.Keiser,McGrawHill, 2000



Different Structures of Optical Fiber

Optical Fiber communications, 3rd ed.,G.Keiser,McGrawHill, 2000



Mode designation in circular cylindrical 

waveguide (Optical Fiber)

:modesEH Hybrid

:modesHE Hybrid

:modesTM

:modes TE
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lm The electric field vector lies in transverse plane.

The magnetic field vector lies in transverse plane.

TE component is larger than TM component.

TM component is larger than TE component.
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m= # of variation cycles or zeros in r direction.
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Two degenerate fundamental modes in Fibers 
(Horizontal & Vertical            Modes)

11HE

Optical Fiber communications, 3rd ed.,G.Keiser,McGrawHill, 2000



Mode propagation constant as a function of frequency

• Mode propagation constant,           , is the most important transmission 
characteristic of an optical fiber, because the field distribution can be easily 
written in the form of eq. [2-27]. 

• In order to find a mode propagation constant and cut-off frequencies of 
various modes of the optical fiber, first we have to calculate the 
normalized frequency, V, defined by:
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a: radius of the core, is the optical free space wavelength,
are the refractive indices of the core & cladding.
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Plots of the propagation constant as a function of normalized 
frequency for a few of the lowest-order modes



Single mode Operation

• The cut-off wavelength or frequency for each mode is obtained from:

• Single mode operation is possible (Single mode fiber) when:
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• Single mode operation is possible (Single mode fiber) when:
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Single-Mode Fibers

• Example: A fiber with a radius of 4 micrometer and

has a normalized frequency of V=2.38 at a wavelength 1 micrometer. The 
fiber is single-mode for all wavelengths greater and equal to 1 micrometer.
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fiber is single-mode for all wavelengths greater and equal to 1 micrometer.

MFD (Mode Field Diameter): The electric field of the first fundamental 
mode can be written as:
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Birefringence in single-mode fibers

• Because of asymmetries the refractive indices for the two degenerate modes 
(vertical & horizontal polarizations) are different. This difference is referred to as 
birefringence,         :fB
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Optical Fiber communications, 3rd ed.,G.Keiser,McGrawHill, 2000



Fiber Beat Length

• In general, a linearly polarized mode is a combination of both of the 
degenerate modes. As the modal wave travels along the fiber, the 
difference in the refractive indices would change the phase difference 
between these two components & thereby the state of the polarization of 
the mode. However after certain length referred to as fiber beat length, the 
modal wave will produce its original state of polarization. This length is modal wave will produce its original state of polarization. This length is 
simply given by:
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Multi-Mode Operation

• Total number of modes, M, supported by a multi-mode fiber is 
approximately (When V is large) given by: 

• Power distribution in the core & the cladding: Another quantity of 
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• Power distribution in the core & the cladding: Another quantity of 
interest is the ratio of the mode power in the cladding,            to the total 
optical power in the fiber, P,  which at the wavelengths (or frequencies) far 
from the cut-off is given by:
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