Rajasthan Technical University, Kota B.Tech. VI Semester ECE Fiber Optics Communication

Unit 5: Lecture 03 Stimulated Raman Scattering (SRS) Stimulated Brillouin Scattering (SBS)

Chetan Selwal Assistant Professor Department of ECE Mahila Engineering College Ajmer

Contents

- Introduction
- Stimulated Raman Scattering (SRS)
- Stimulated Brillouin Scattering (SBS)
- References

Introduction

The origin of SRS and SBS lies in Ultrafast third-order susceptibility $\chi^{(3)}$.

- Imaginary part leads to
 - Stimulated Brillouin Scattering(SBS)
 - Stimulated Raman Scattering (SRS)
- Non linearities due to Inelastic Scattering Process

Stimulated Raman Scattering

- SRS is interaction between lightwave and the vibrational modes of silica molecules.
- If a photon with energy hv_1 is incident on a molecule having vibrational frequency v_m , the molecule can absorb some energy from the photon.
- In this interaction, the photon is scattered thereby attaining a lower frequency v_2 (longer wavelength) and lower energy hv_2 .
- The modified photon is called a stokes photon.
- Because the optical signal wave that is injected into a fiber is the source of the interacting photons, it is called the *pump wave* because it supplies power for the generated wave.
- This process generates scattered light at a wavelength longer than that of incident light.
- If another signal is already present at this longer wavelength then that signal is amplified.
- The power transferred to a higher-wavelength channel increases approximately linearly with channel spacing up to about 16 THz (or 125 nm at 1550-nm), and then drops off sharply for larger spacing.

Stimulated Raman Scattering

Stimulated Brillouin Scattering

- In *stimulated Brillouin scattering (SBS)* a strong optical signal generates an acoustic wave that *produces variations in the refractive index*.
- The index variations *cause lightwaves to scatter in the backward direction towards the transmitter*.
- The backscattered light *experiences gain from the forward-propagating signals*, which leads to depletion of the signal power.
- Frequency of scattered light experiences a doppler shift:

 $v_{\rm B} = 2nV_{\rm s}/\lambda$ n= referactive index; Vs= Velocity of sound in material

- Below a signal level called the *SBS threshold*, the transmitted power increases linearly with the input level and SBS is negligible.
- *Beyond the SBS threshold*, the % increase in signal depletion grows with signal strength
- Beyond the *SBS limit* any additional launched optical power is scattered backward in the fiber.
- SBS affects the power in same channel only.

¹ The SBS impairment on the CNR of an AM-VSB signal. The triangles are the CNR and the crosses represent the backscattered power. (Adapted with permission from Mao, Bodeep, Tkach, Chraplyvy, Darcie, and Dorosier,¹¹ © IEEE, 1992)

The effect of SBS on signal power in an optical fiber

References

- Optical Fiber Communication, 5 e TMH by Gerd Keiser
- Optical Fiber Communications, 2 e Pearson Education by John M. Senior
- <u>www.google.com</u>

• Note: Author do not claim the originality of contents. The texts referred above have been used for preparation of this lecture for instructional purpose only.

Thank You

For more details please visit www.chetanselwal.com/learning-resources

Queries may be posted at www.chetanselwal.com/forum/fiber-optics-comm-forum