Unit 1: Overview

1

Overview – Chapter 1

- Overview of Optical Fiber Communications
- Motivations for Lightwave Communications
- Optical Spectral Bands
- Decibel Units
- Network Information Rates
- WDM Concepts
- Key Elements of Optical Fiber Systems
- Standards for Optical Fiber Communications
- Modeling and Simulation Tools

Motivations

- Lifestyle changes from Internet growth and use
 - Average phone call lasts 3 minutes
 - Average Internet session is 20 minutes
- More and more bandwidth-hungry services are appearing
 - Web searching, home shopping, high-definition interactive video, remote education, telemedicine and e-health, high-resolution editing of home videos, blogging, and large-scale high-capacity escience and Grid computing
- Increase in PC storage capacity and processing power
 - 20G hard drives were fine around 2000; now standard is 160G
 - Laptops ran at 300 MHz; now the speed is over 3 GHz
- There is an extremely large choice of remotely accessible programs and information databases

Advantages of optical fibers

- <u>Long Distance Transmission</u>: The lower transmission losses in fibers compared to copper wires allow data to be sent over longer distances.
- <u>Large Information Capacity</u>: Fibers have wider bandwidths than copper wires, so that more information can be sent over a single physical line.
- <u>Small Size and Low Weight</u>: The low weight and the small dimensions of fibers offer a distinct advantage over heavy, bulky wire cables in crowded underground city ducts or in ceiling-mounted cable trays.
- <u>Immunity to Electrical Interference</u>: The dielectric nature of optical fibers makes them immune to the electromagnetic interference effects.
- <u>Enhanced Safety</u>: Optical fibers do not have the problems of ground loops, sparks, and potentially high voltages inherent in copper lines.
- <u>Increased Signal Security</u>: An optical signal is well-confined within the fiber and an opaque coating around the fiber absorbs any signal emissions.

Optical Spectral Bands

	O-Band	E-Band	S-Band	C-Band	L-Band	U-Band
12	60 13	60 14	60 15	30 15	65 16	625 1675

Wavelength (nm)

• Original band (O-band): 1260 to 1360 nm

- Region originally used for first single-mode fibers

• Extended band (E-band): 1360 to 1460 nm

- Operation extends into the high-loss water-peak region

- Short band (S-band): 1460 to 1530 nm (shorter than C-band)
- Conventional band (C-band): 1530 to 1565 nm (EDFA region)
- Long band (L-band): 1565 to 1625 nm (longer than C-band)
- Ultra-long band (U-band): 1625 to 1675 nm

Optical Spectral Bands

Optical communication uses <u>wavelength</u> to designate the spectral operating region and <u>photon energy</u> or <u>optical power</u> when discussing topics such as signal strength or electro-optical component performance.

1.In a vacuum the speed of light c is equal to the wavelength λ **times the frequency** ν , so that

 $\mathbf{c} = \lambda \mathbf{v}$

2. The relationship between the *energy of a photon* and its *frequency (or wavelength)* is determined by *Planck's Law*

 $\mathbf{E} = \mathbf{h} \mathbf{v}$

where $h = 6.63 \times 10^{-34}$ J-s = 4.14 $\times 10^{-15}$ eV-s is *Planck's* constant.

3.In terms of wavelength (measured in units of μ m), the *energy* in electron volts is given by

 $E(eV) = 1.2406 / \lambda(\mu m)$

• The decibel (dB) unit is defined by

Power ratio in dB = 10 log
$$\frac{P_2}{P_1}$$

Point 1

Table 1.2 Representative values of decibel power loss and the remaining percentages

		Power loss (in dB)	Percent of power left	
Transmission line Point 2	0.1	98		
	Point 2	0.5	89	
		1	79	
		2	63	
		3	50	
		6	25	
		10	10	
		20	1	

- Since the decibel is used to refer to ratios or relative units, it gives no indication of the absolute power level.
- A derived unit called the dBm can be used for this purpose.
- This unit expresses the power level P as a logarithmic ratio of P referred to 1 mW.
- *The power in dBm* is an absolute value defined by

Power level (in dBm) =
$$10 \log \frac{P(\text{in mW})}{1 \text{ mW}}$$

- A rule-of-thumb relationship to remember for optical fiber communications is 0 dBm = 1 mW.
- Therefore, positive values of dBm are greater than 1 mW and negative values are less than 1 mW.

Table 1.3 Examples of optical power levels and their dBm equivalents

Power	dBm equivalent	
200 mW	23	
100 mW	20	
10 mW	10	
1 mW	0	
$100 \mu W$	-10	
$10 \mu W$	-20	
$1 \mu W$	-30	
100 nW	-40	
10 nW	-50	
1 nW	-60	
100 pW	-70	
10 pW	-80	
1 pW	-90	

Example 1.3 Consider the transmission path from point 1 to point 4 shown in Fig. 1.7. Here the signal is attenuated by 9 dB between points 1 and 2. After getting a 14-dB boost from an amplifier at point 3, it is again attenuated by 3 dB between points 3 and 4. Relative to point 1, the signal level in dB at point 4 is

dB level at point 4 = (loss in line 1) + (amplifier gain) + (loss in line 2) = (-9 dB) + (14 dB) + (-3 dB) = + 2 dB

Thus the signal has a 2-dB (a factor of $10^{0.2} = 1.58$) gain in power in going from point 1 to point 4.

Fig. 1.7 Example of signal attenuation and amplification in a transmission path

Power levels differing by many orders of magnitude can be compared easily when they are in decibel form.

WDM Concepts

- Many independent information-bearing signals are sent along a fiber simultaneously
- Independent signals are carried on different wavelengths
 - Data rates or formats on each wavelength may be different
 - **Coarse WDM (CWDM) and dense WDM (DWDM)** are the two major wavelength multiplexing techniques
 - Wavelength routing and switching techniques based on lightpaths are being developed

Key Elements of Optical Fiber Systems

- **Transmitter:** a light source and signal-formatting circuitry
- A cable offering mechanical and environmental protection to the optical fibers contained inside
- A receiver consisting of a photodetector plus amplification and signal-restoring circuitry
- Other components: Optical amplifiers, connectors, splices, couplers, regenerators, and passive and active devices.

Standards

The three basic classes for fiber optics are *primary* standards, *component testing* standards, and *system* standards.

- <u>*Primary standards*</u> deal with *physical parameters:* attenuation, bandwidth, operational characteristics of fibers, and optical power levels and spectral widths.
- <u>Component testing standards</u> define tests for fiber-optic component performance and establish equipmentcalibration procedures.

- The main ones are *Fiber Optic Test Procedures (FOTP)*

• <u>System standards</u> refer to measurement methods for optical links and networks.

Electromagnetic Spectrum

Fig. 1.1 The regions of the electromagnetic spectrum used for radio and optical fiber communications. (Used with permission from A. B. Carlson, Communication Systems, © 1986, McGraw-Hill ⁴ Book Company.)

Transmission Characteristics

Fig. 1.4 Characteristics and operating ranges of the four key optical fiber link components

Application in different scenarios

Plowing operation for direct burial of optical fiber cables. (Photo © Vermeer Corporation. All Rights Reserved; www.vermeer.com.)

Ship used to lay optical fiber cables across a sea or an ocean. (Photo courtesy of TE SubCom: www.SubCom.com.)